\qquad Block: \qquad Date: \qquad

Adding and Subtracting Polynomials

Monomial	Number, variable, or product of a number and one or more variables with whole number exponents.
Degree of a monomial	Sum of the exponents of the variables in the monomial.
Polynomial	A monomial or the sum of monomials (each monomial is a term of the polynomial).
Degree of a polynomial	The greatest degree of its terms.
Leading coefficient	Coefficient of the first term (the term with greatest degree) in a polynomial.
Binomial	A polynomial with two terms.
Trinomial	A polynomial with three terms.

Example of a polynomial:

We write polynomials in descending order of the degree of the terms (standard form):
Example: Rewrite $15 x-x^{3}+3$ so that exponents are in decreasing order. Identify the degree and leading coefficient.
Answer: Polynomial \qquad Degree \qquad Leading Coefficient \qquad
Example: Identify whether the following expressions are polynomials. If it is, what is the degree and how many terms are there? If it is not, why not?

Expression	Polynomial?	Degree, num terms OR why not?
a) 9		
b) $2 x^{2}+x-5$		
c) $6 n^{4}-8^{n}+\sqrt{n}$		
d) $n^{-2}-3$		
e) $7 b^{5} c^{3}+4 b^{4} c$		

- Add polynomials by combining like terms
- Subtract polynomials by first multiplying second polynomial by -1 and then add

a) $\left(2 x^{3}-5 x^{2}+x\right)+\left(2 x^{2}+x^{3}-1\right)$	b) $\left(3 x^{2}+x-6\right)+\left(x^{2}+4 x+10\right)$
c) $\left(4 x^{2}+5\right)-\left(-2 x^{2}+2 x-4\right)$	d) $\left(4 x^{2}-3 x+5\right)-\left(3 x^{2}-x-8\right)$

Multiplying Polynomials

Multiplying a monomial and a polynomial

Example: $2 x^{3}\left(x^{3}+3 x^{2}-2 x+5\right)$
Use the distributive property, and then combine like terms:
$2 x^{3}\left(x^{3}+3 x^{2}-2 x+5\right)=2 x^{6}+6 x^{5}-4 x^{4}+10 x^{3}$
Multiplying a polynomial and a polynomial (more than one term in each polynomial)
Example: $(x-4)(3 x+2)$

Method 1:	Table $3 x$	2	Method 2: Vertically $(x-4)$	Method 3: Horizontally $(x-4)(3 x+2)=$
\times	$3 x^{2}$	$2 x$	$x \quad(3 x+2)$	$3 x^{2}+2 x-12 x-8=$
-4	-12x	-8	$2 x-8$	$3 x^{2}-10 x-8$
Multiply	each	ntry by row	$\frac{3 x^{2}-12 x}{2 x^{2}-10 x}$	- Distribute each term in the first polynomial over
Add term	ms in		Uses same method as	each term in the second
$3 x^{2}+2 x$	$x-12 x$	-8=	multiplying two digit	polynomial
			numbers	- Combine like terms

The FOIL Method

The FOIL method is a way to remember the horizontal method described above (multiple distribution). It works when a binomial is multiplied by another binomial.
FOIL $=$ First Outer Inner Las \dagger

You try:

a) $x\left(2 x^{2}-3 x+9\right)$	b) $-a^{5}\left(-9 a^{2}+5 a+24\right)$	c) $(x+2)(x-3)$
d) $(y-5)(2 y+3)$	e) $(s+4)\left(s^{2}+6 s-5\right)$	f) $(2 r-1)(5 r+3)$
g) Write a polynomial that represents the area of the shaded region:		

