Algebra 1 Notes SOL A. $2\left(9.8,9.6\right.$) Factor By Grouping and $a x^{2}+b x+c \quad$ Mrs. Grieser Name: \qquad Block: \qquad Date: \qquad

Factoring By Grouping

Review Type I Factoring: Factor out greatest common monomial factor
Review Type II Factoring: Factor difference of squares (sum and difference pattern)
Review Type III Factoring: Factor $x^{2}+b x+c$

Type IV Factoring - Four Terms: Factor by Grouping

If we are given a four term polynomial, we split the polynomial into two sets of two terms, and factor those sets using type I factoring. If we find a common polynomial, we use type I factoring again to factor it out.
Factoring a common polynomial: Factor $x(x-5)+3(x-5)$
Notice there is a common polynomial of $x-5$. We use type I factoring to factor it out, and are left with $x+3$. So the factored form is $(x-5)(x+3)$.

Examples:

a) $5 x^{2}(x-2)+3(x-2)$
b) $7 y(5-y)-3(y-5)$
c) $11 x(x-8)+3(8-x)$
(Factor out -1 to make signs match!)

We use this skill to factor a four term polynomial. Factor the first two terms, then factor the second two terms. Then factor the common polynomial.
Examples:
a) $n^{3}+6 n^{2}+5 n+30$
b) $m^{3}+7 m^{2}-2 m-14$
c) $9 x^{3}+9 x^{2}-7 x-7$
$=\left(n^{3}+6 n^{2}\right)+(5 n+30)$
$=\left(m^{3}+7 m^{2}\right)+(-2 m-14)$
$=n^{2}(n+6)+5(n+6)$
$=m^{2}(m+7)-2(m+7)$
$=(n+6)\left(n^{2}+5\right)$
$=(m+7)\left(m^{2}-2\right)$

You try: Factor the expression
a) $2 x(x+4)-3(x+4)$
b) $3 y^{2}(y-2)+5(2-y)$
c) $x^{3}+3 x^{2}+5 x+15$
d) $x^{3}+x^{2}+x+1$
e) $y^{2}+y+y x+x$
f) $x^{3}-6+2 x-3 x^{2}$
(HINT: Rearrange terms in degree order!)

Algebra 1 Notes SOL A. $2\left(9.8,9.6\right.$) Factor By Grouping and $a x^{2}+b x+c \quad$ Mrs. Grieser Type V Factoring - Factor $a x^{2}+b x+c$
We can factor polynomials of the form $x^{2}+b x+c$ (type III factoring). What do we do to factor polynomials of this form when the leading coefficient is not 1 ?

Guess and Check

Factor $2 x^{2}-7 x+3$

- Draw sets of parentheses: ()()
- In this case, the first terms in each must be $2 x$ and x (why?) and the signs must be negative (why?): $\quad(2 x-)(x-)$
- The factors of 3 are 1 and 3 ; test by multiplying back to see what works

$$
\begin{aligned}
& \circ(2 x-3)(x-1) \longrightarrow 2 x^{2}-5 x+3 \text { NOPE! } \\
& \circ(2 x-1)(x-3) \longrightarrow 2 x^{2}-7 x+3 \text { YES!! }
\end{aligned}
$$

- Factors are $(2 x-1)(x-3)$

Factor by Grouping Method

If you are not a good guesser, it can be hard sometimes to use the guess and check method.
We can use what we know about factoring by grouping to help us.
Factor $15 x^{2}+13 x+2$

- Multiply a \times c $(15 \times 2=30)$
- What factors of 30 add to 13 ? (10 and 3)
- Split up middle term: $15 x^{2}+10 x+3 x+2$
- Group: $5 x(3 x+2)+(3 x+2)$
- Factor out polynomial: $(3 x+2)(5 x+1)$
- VERIFY (do not skip this step): $(3 x+2)(5 x+1)=15 x^{2}+13 x+2$

Sometimes the terms have a common factor. FACTOR OUT THE GCF BEFORE PROCEEDING!!
Examples:
a) $6 x^{2}-11 x-10$
b) $3 x^{2}+14 x-5$
c) $4 x^{2}+26 x-14$

You try: Factor the polynomials
a) $3 x^{2}+8 x+4$
b) $4 x^{2}-9 x+5$
c) $2 x^{2}-13 x+6$
d) $-4 x^{2}+12 x+7$
e) $4 x^{2}+11 x-3$
f) $12 x^{2}-x-6$
(hint: factor out -1 first)

