Factoring Quadratic Trinomials Notes

There are several ways we can factor a polynomial of the form $a x^{2}+b x+c, a \neq 0$.
Method 1: Reverse FOIL.
Mentally work backwards from what we know about FOIL. This works best for the simple case, when $a=1$. It is a lot harder when $a \neq 1$.

- List the factors for c.
- If the sign of c is positive, the signs of the binomial are the same. If c is positive, then the signs are positive; if c is negative, the signs are negative. We want the factors that ADD up to b.
- If the sign of c is negative, one of the binomials will have a positive sign, and the other will be negative. We want the factors that SUBTRACT to make b (we are still adding, but since they have opposite signs, we will essentially be subtracting; it is important to consider the sign when we add these numbers of different signs).

Example 1: Factor $x^{2}+5 x+6$
Step 1: List the factors of 6:
Step 2: The value of $c, 6$, is positive. Which factors of 6 add up to 5 ?
Step 3: The signs of the factors will be positive because b is positive.
Factored version: $(x+3)(x+2)$
Step 4: CHECK YOUR WORK. Multiply your answer and check it is what we started with.
Example 2. Factor $x^{2}-5 x-6$
Step 1: List the factors of 6:
Step 2: The value of $c,-6$, is negative. Which factors of 6 when subtracted give 5 ? Which factor should be negative and which should be positive?

Step 3: The signs of the factors will be positive because b is positive.
Factored version: $(x-6)(x+1)$
Step 4: CHECK YOUR WORK. Multiply your answer and check it is what we started with. You try:
a) Factor $x^{2}+8 x+12$
b) Factor $x^{2}-10 x+10$
c) Factor $x^{2}-2 x-8$

Method 2: Box Method

This method works well for any value of a.

- Draw a 2×2 box. Put $a x^{2}$ in the upper left box and c in the lower right box.
- Multiply $a^{*} c$. List the factors. Based on the signs of the trinomial, we can determine whether we want factors that add up or subtract to c (see method 1).
- Place the factors as coefficients to the x-variable in the remaining boxes.
- Extract common factors vertically and horizontally. These are your binomials!

Example: $2 x^{2}-5 x-3$

You try: $2 x^{2}-7 x+12$

Method 3: Diamond Method

This method works for any value of a.

Steps:

- In the top, put the product of a and c.
- In the bottom, put the value of b.

- The left and the right locations are the numbers that when multiplied, give us ac, and when added, give us b, that is ef $=a c$ and $e+f=b$.
- Put a fraction bar over the left and right values, and put a on top. Reduce.
- The top part of the fraction bar is the x-coefficient of the binomial factor, and the bottom part is the constant part.

Example: $2 x^{2}-5 x-3$
1)

2)

3)

4)

$$
\begin{gathered}
\frac{2 x}{-6}=\frac{x}{-3} \longrightarrow x-3 \\
\frac{2 x}{1} \longrightarrow 2 x+1
\end{gathered}
$$

Factored version: $(x-3)(2 x+1)$...CHECK BY MULTIPLYING!

You try: $6 x^{2}-x-2$

Method 4: Slide and Divide

This method works well for any value of a.

- "Slide" the leading coefficient, a, to the end, and multiply it by c. Pull out common factors, if any.
- Now we have the "simple" case, when $a=1$. Factor using method 1 .
- "Put back" the number you slid by dividing the number in each binomial by a.
- Simplify the fractions. If there is a denominator left in one of the binomials, make it the coefficient of the x-term for that binomial.

Example: Factor $3 x^{2}+x-10$
Step 1: Slide $a(3)$ to the end, multiplying by $c(-10): x^{2}+x-30$
Step 2: Factor using method 1: $(x+6)(x-5)$
Step 3: Divide numbers by a: $(x+6 / 3)(x-5 / 3)$
Step 4: Simplify fractions: $(x+2)(x-5 / 3)$
Step 5: Hey, there's a fraction left! Move the denominator in front of the coefficient:

$$
(x+2)(3 x-5)
$$

Step 6: CHECK YOUR WORK. Multiply your resulting factors to check it is correct.
You try: Factor $2 x^{2}-7 x+5$

Practice

Factor the following trinomials. You may use any method you wish, but try a few of them to help you find your favorite!

1) $x^{2}+6 x+5$
2) $x^{2}-4 x-12$
3) $x^{2}-x-12$
4) $\mathrm{p}^{2}+9 \mathrm{p}+14$
5) $2 w^{2}+7 w+3$
6) $x^{2}+2 x-24$
7) $4 x^{2}-4$
8) $5 a^{2}-8 a-4$
9) $3 n^{2}+13 n+4$
10) $-x^{2}-4 x+5$
