Name: _____ Block: ____ Date: ____

Triangle Review

- Triangles are three-sided polygons.
- The sum of the angles of a triangle is 180°.

We can classify triangles by their sides:

We can classify triangles by their angles:

You try:

Find the measure of the missing angle x...

a)

b)

c)

Classify each triangle by its angles and sides...

d)

e)

f)

Right Triangles and the Pythagorean Theorem

- Adjacent sides are called legs
- Side opposite the right triangle is called the hypotenuse

Pythagorean Theorem

Words If a triangle is a right triangle, then the square of the length of the hypotenuse is equal to the sum of the squares of the lengths of the legs.

Model

Symbols
$$a^{2} + b^{2} = c^{2}$$

Example: Find the length of the hypotenuse using the Pythagorean Theorem:

Step 1: Write the Pythagorean Theorem:

$$a^{2} + b^{2} = c^{2}$$

 $3^{2} + 4^{2} = c^{2}$

Step 2: Replace values (legs are a and b):

$$9 + 16 = c^2$$

$$25 = c^2$$

Take square root of both sides:

$$\sqrt{25} = \sqrt{c^2}$$

<u>Word Problem</u>: A ladder is leaning against a wall. If the ladder is 13 feet long, and the bottom of the ladder is 5 feet from the wall, how far up the wall will the top of the ladder reach?

Solution: We know one leg (5) and the hypotenuse (13). Substitute values into the Pythagorean Theorem to find the measure of the other leg:

$$a^2 + b^2 = c^2$$

$$5^2 + b^2 = 13^2$$

$$25 + b^2 = 169$$

$$b^2 = 169 - 25 = 144$$

$$\sqrt{b^2} = \sqrt{144}$$

b = 12. The ladder touches 12 feet up the wall.

You try: Find the length of the missing side, to the nearest tenth. Side "c" is the hypotenuse.

a)

b)

c)

d)
$$a = 18$$
, $b = 80$, $c = ?$

g) If the sides of a triangle are 6, 7, and 10, is the triangle a right triangle?