Name: \qquad Block: \qquad Date: \qquad
Area of Parallelograms, Triangles, Trapezoids

- A parallelogram is a quadrilateral whose opposite side are parallel and congruent.
- A triangle is a three-sided polygon.
- A trapezoid is a quadrilateral with exactly one pair of parallel sides.

Area of a Parallelogram: $A=b h($ Area $=$ base \times height $)$

Area of a Parallelogram		
Words	The area A of a parallelogram in square	Model
	units is $A=b h$, where b is the base of	
the parallelogram and h is the height.		
Symbols	$A=b h$	

Example: Find the area of the parallelograms...
a)

b)

Area of Triangles $\left(A=\frac{1}{2} b h\right)$ and Trapezoids $\left(A=\frac{1}{2} h(a+b)\right)$

Shape	Words	Area Formula	Model
Triangle	A diagonal of a parallelogram separates the parallelogram into two congruent triangles. The area of each triangle is one-half the area of the parallelogram.	$A=\frac{1}{2} b h$	
Trapezoid	A trapezoid has two bases. The height of a trapezoid is the elistance between the bases. A trapezoid can be separated into two triangles.	$A=\frac{1}{2} h(a+b)$	a

Example: Find the area of the triangle and trapezoid...
a)

b)

Circumference and Area of Circles

- A circle is the set of all points in a plane that are the same distance from a given point

Circumference of a circle: $C=\pi d$ or $C=2 \pi r$ Area of a circle: $A=\pi r^{2}$

Example: Find the circumference and area of the following circles, rounding to the nearest tenth...
a)

circumference \qquad
b) diameter $=6 \mathrm{~cm}$
circumference \qquad
area \qquad
area \qquad

Area of Composite Figures

To find the area of a composite figure, decompose the composite figure into figures with area you know how to find. Use the area formulas you have learned in this chapter.

Examples:

a)

b)

You try. Find the areas. For circles, find both area and circumference...
a) triangle:
base $=4 \mathrm{in}$, height $=10 \mathrm{in}$
b) trapezoid:
c) circle: diameter $=10 \mathrm{f} \dagger$
height $=10 \mathrm{~cm}$; bases 4 and 6 cm
d) parallelogram:
e) parallegram: find height! base $=10 \mathrm{~m}$; height $=4 \mathrm{~m}$

Area $=30 \mathrm{in}^{2}$, base $=6$ in
f) triangle: find base!

Area $=60 \mathrm{ft}^{2}$; height $=6 \mathrm{ft}$

